A search engine is a software system designed to carry out web searches. They search the World Wide Web in a systematic way for particular information specified in a textual web search query. The search results are generally presented in a line of results, often referred to as search engine results pages (SERPs). When a user enters a query into a search engine, the engine scans its index of web pages to find those that are relevant to the user's query. The results are then ranked by relevancy and displayed to the user. The information may be a mix of links to web pages, images, videos, infographics, articles, research papers, and other types of files. Some search engines also mine data available in databases or open directories. Unlike web directories and social bookmarking sites, which are maintained by human editors, search engines also maintain real-time information by running an algorithm on a web crawler. Any internet-based content that cannot be indexed and searched by a web search engine falls under the category of deep web.
A system for locating published information intended to overcome the ever increasing difficulty of locating information in ever-growing centralized indices of scientific work was described in 1945 by Vannevar Bush, who wrote an article in The Atlantic Monthly titled "As We May Think"[1] in which he envisioned libraries of research with connected annotations not unlike modern hyperlinks.[2] Link analysis would eventually become a crucial component of search engines through algorithms such as Hyper Search and PageRank.[3][4]
gsa search engine ranker license key
The first internet search engines predate the debut of the Web in December 1990: WHOIS user search dates back to 1982,[5] and the Knowbot Information Service multi-network user search was first implemented in 1989.[6] The first well documented search engine that searched content files, namely FTP files, was Archie, which debuted on 10 September 1990.[7]
The rise of Gopher (created in 1991 by Mark McCahill at the University of Minnesota) led to two new search programs, Veronica and Jughead. Like Archie, they searched the file names and titles stored in Gopher index systems. Veronica (Very Easy Rodent-Oriented Net-wide Index to Computerized Archives) provided a keyword search of most Gopher menu titles in the entire Gopher listings. Jughead (Jonzy's Universal Gopher Hierarchy Excavation And Display) was a tool for obtaining menu information from specific Gopher servers. While the name of the search engine "Archie Search Engine" was not a reference to the Archie comic book series, "Veronica" and "Jughead" are characters in the series, thus referencing their predecessor.
In the summer of 1993, no search engine existed for the web, though numerous specialized catalogues were maintained by hand. Oscar Nierstrasz at the University of Geneva wrote a series of Perl scripts that periodically mirrored these pages and rewrote them into a standard format. This formed the basis for W3Catalog, the web's first primitive search engine, released on September 2, 1993.[15]
In June 1993, Matthew Gray, then at MIT, produced what was probably the first web robot, the Perl-based World Wide Web Wanderer, and used it to generate an index called "Wandex". The purpose of the Wanderer was to measure the size of the World Wide Web, which it did until late 1995. The web's second search engine Aliweb appeared in November 1993. Aliweb did not use a web robot, but instead depended on being notified by website administrators of the existence at each site of an index file in a particular format.
JumpStation (created in December 1993[16] by Jonathon Fletcher) used a web robot to find web pages and to build its index, and used a web form as the interface to its query program. It was thus the first WWW resource-discovery tool to combine the three essential features of a web search engine (crawling, indexing, and searching) as described below. Because of the limited resources available on the platform it ran on, its indexing and hence searching were limited to the titles and headings found in the web pages the crawler encountered.
One of the first "all text" crawler-based search engines was WebCrawler, which came out in 1994. Unlike its predecessors, it allowed users to search for any word in any webpage, which has become the standard for all major search engines since. It was also the search engine that was widely known by the public. Also in 1994, Lycos (which started at Carnegie Mellon University) was launched and became a major commercial endeavor.
The first popular search engine on the Web was Yahoo! Search.[17] The first product from Yahoo!, founded by Jerry Yang and David Filo in January 1994, was a Web directory called Yahoo! Directory. In 1995, a search function was added, allowing users to search Yahoo! Directory.[18][19] It became one of the most popular ways for people to find web pages of interest, but its search function operated on its web directory, rather than its full-text copies of web pages.
Soon after, a number of search engines appeared and vied for popularity. These included Magellan, Excite, Infoseek, Inktomi, Northern Light, and AltaVista. Information seekers could also browse the directory instead of doing a keyword-based search.
In 1996, Robin Li developed the RankDex site-scoring algorithm for search engines results page ranking[20][21][22] and received a US patent for the technology.[23] It was the first search engine that used hyperlinks to measure the quality of websites it was indexing,[24] predating the very similar algorithm patent filed by Google two years later in 1998.[25] Larry Page referenced Li's work in some of his U.S. patents for PageRank.[26] Li later used his Rankdex technology for the Baidu search engine, which was founded by him in China and launched in 2000.
In 1996, Netscape was looking to give a single search engine an exclusive deal as the featured search engine on Netscape's web browser. There was so much interest that instead Netscape struck deals with five of the major search engines: for $5 million a year, each search engine would be in rotation on the Netscape search engine page. The five engines were Yahoo!, Magellan, Lycos, Infoseek, and Excite.[27][28]
Google adopted the idea of selling search terms in 1998, from a small search engine company named goto.com. This move had a significant effect on the search engine business, which went from struggling to one of the most profitable businesses in the Internet.[29]
Search engines were also known as some of the brightest stars in the Internet investing frenzy that occurred in the late 1990s.[30] Several companies entered the market spectacularly, receiving record gains during their initial public offerings. Some have taken down their public search engine, and are marketing enterprise-only editions, such as Northern Light. Many search engine companies were caught up in the dot-com bubble, a speculation-driven market boom that peaked in March 2000.
Around 2000, Google's search engine rose to prominence.[31] The company achieved better results for many searches with an algorithm called PageRank, as was explained in the paper Anatomy of a Search Engine written by Sergey Brin and Larry Page, the later founders of Google.[4] This iterative algorithm ranks web pages based on the number and PageRank of other web sites and pages that link there, on the premise that good or desirable pages are linked to more than others. Larry Page's patent for PageRank cites Robin Li's earlier RankDex patent as an influence.[26][22] Google also maintained a minimalist interface to its search engine. In contrast, many of its competitors embedded a search engine in a web portal. In fact, the Google search engine became so popular that spoof engines emerged such as Mystery Seeker.
By 2000, Yahoo! was providing search services based on Inktomi's search engine. Yahoo! acquired Inktomi in 2002, and Overture (which owned AlltheWeb and AltaVista) in 2003. Yahoo! switched to Google's search engine until 2004, when it launched its own search engine based on the combined technologies of its acquisitions.
Web search engines get their information by web crawling from site to site. The "spider" checks for the standard filename robots.txt, addressed to it. The robots.txt file contains directives for search spiders, telling it which pages to crawl and which pages not to crawl. After checking for robots.txt and either finding it or not, the spider sends certain information back to be indexed depending on many factors, such as the titles, page content, JavaScript, Cascading Style Sheets (CSS), headings, or its metadata in HTML meta tags. After a certain number of pages crawled, amount of data indexed, or time spent on the website, the spider stops crawling and moves on. "[N]o web crawler may actually crawl the entire reachable web. Due to infinite websites, spider traps, spam, and other exigencies of the real web, crawlers instead apply a crawl policy to determine when the crawling of a site should be deemed sufficient. Some websites are crawled exhaustively, while others are crawled only partially".[33]
Between visits by the spider, the cached version of the page (some or all the content needed to render it) stored in the search engine working memory is quickly sent to an inquirer. If a visit is overdue, the search engine can just act as a web proxy instead. In this case, the page may differ from the search terms indexed.[32] The cached page holds the appearance of the version whose words were previously indexed, so a cached version of a page can be useful to the website when the actual page has been lost, but this problem is also considered a mild form of linkrot.
Typically when a user enters a query into a search engine it is a few keywords.[34] The index already has the names of the sites containing the keywords, and these are instantly obtained from the index. The real processing load is in generating the web pages that are the search results list: Every page in the entire list must be weighted according to information in the indexes.[32] Then the top search result item requires the lookup, reconstruction, and markup of the snippets showing the context of the keywords matched. These are only part of the processing each search results web page requires, and further pages (next to the top) require more of this post-processing. 2ff7e9595c
Comments